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Molecular dynamics with quantum fluctuations
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A quantum dynamics approach, called Gaussian molecular dynamics, is introduced. As in the centroid
molecular dynamics, the N-body quantum system is mapped to an N-body classical system with an effective
Hamiltonian arising within the variational Gaussian wave-packet approximation. The approach is exact for the
harmonic oscillator and for the high-temperature limit, accurate in the short-time limit and is computationally

very efficient.
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The accurate and efficient computation of dynamical
properties of quantum many-body systems is a challenging
task, although a number of methods exist. To name a few, the
semiclassical initial value representation (SC-IVR),! linear-
ized SC-IVR,? forward-backward IVR,? forward-backward
semiclassical dynamics,* Feynman-Kleinert (FK) linearized
path integral,> centroid molecular dynamics (CMD),%7 ring
polymer molecular dynamics (RPMD).? etc.

CMD, RPMD, and the method presented here, Gaussian
molecular dynamics (GMD), focus on the effect of quantum
fluctuations or zero-point energy. The latter dominates in the
long-time dynamics of the condensed phase while effects of
quantum coherence are rapidly quenched by the interaction
with the bath. The zero-point energy is therefore essential for
some dynamical parameters, such as diffusion constants® or
chemical reaction rates. Applications are not limited to
nuclear dynamics at low temperatures. They also include
warm, dense, nondegenerate electron plasmas, as created in
atomic clusters'” and solids'' when exposed to intense x-ray
lasers.

Conceptually akin to the CMD, the GMD maps the dy-
namics of an N-dimensional quantum system with the

Hamiltonian H to that of an N-dimensional classical system
with an effective Hamiltonian,

|
Hegi(x,p) = Vege(x) + Emeeflfp’ (1)

where x and p define the pseudoclassical, respectively, coor-
dinate and momentum vectors; m.g is an effective mass ten-
sor. The mapping is done by setting the particle density and
the partition function to be the same for the two systems,

f dpe_.BHeff(X’p) = <x|€_B[:1|x>, (2)

1
pp(x) = )

Z= f dxdpePHettoP) = Ty o=PH | (3)

1
Qah)

which consequently defines the effective potential

1 l [2 BﬁZ]N/Z
Verr(x) = - Eln[pﬁ(X)] - Eln{ W} . (4)

The classical Hamiltonian dynamics,
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X= C?Heff/(yp; p =- ﬂHeff/ﬁx (5)
then preserves the quantum canonical distribution. However,
this classical dynamics is not necessarily related to the quan-
tum dynamics. Moreover, the quantum-classical mapping is
not unique, for example, due to the ambiguity in the choice
of the mass matrix, m. The dynamics is actually wrong,
even for a one-dimensional (1D) harmonic oscillator, at finite
B, if mp=m. Yet, we utilize this flexibility by choosing m.g
such that the dynamics is exact for the harmonic potential.

CMD performs the quantum-classical mapping within the
path-integral Monte Carlo (PIMC) framework. In GMD we
evaluate the quantum density pg(x) using the variational
Gaussian wave-packet (VGW) method,'? a recently intro-
duced alternative to PIMC. VGW proved itself practically
accurate and numerically very efficient for a wide variety of
systems.'>"!7 In its most consistent implementation CMD is
numerically very expensive as it requires a converged PIMC
calculation for each estimation of the centroid force. Subse-
quent developments of the CMD,'®!? or the related RPMD,?
though faster, may show spurious frequencies due to the
presence of additional unphysical degrees of freedoms.
While numerically very efficient, GMD does not introduce
unphysical degrees of freedom. Furthermore, complex fre-
quencies, as encountered in approaches based on the FK
approximation,?® do not occur in GMD.

Both CMD and GMD are exact for a harmonic oscillator
and in the high-temperature limit. The CMD includes the
quantum fluctuations by averaging over all ring polymers of
a given centroid. The quantum fluctuations in GMD are av-
eraged over a Gaussian wave packet.

A more recent method, the full Wigner dynamics (FWD)
developed by Liu and Miller,”! also makes use of the
quantum-classical mapping. Moreover, FWD also utilizes the
VGW method for calculating the Wigner transform of the

Boltzmann operator e #. The resulting expressions to esti-
mate the time-correlation functions are then given in terms of
an average over the classical phase space. However, in its
current form FWD requires one additional integral over the
full configuration space, compared to the method presented
here.

We illustrate here a 1D case. The multidimensional gen-
eralization of GMD is straightforward but will be presented
in a forthcoming publication.

The particle density can be written in the form
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pplx) = (xlePlx) = (x, B/2]x, B12), (6)

where

X, T) = e‘Tf}|x>

is the solution of the imaginary-time Schrodinger equation
with initial condition (r|x,0)=4&(r—x). This solution is ap-
proximated by a Gaussian wave packet,

(r

TP
x,7) =~ (2mg,)"? exp{— [rz# + 'yT} (7)
4

with variational parameters ¢, g, and vy, satisfying

qo=x; g =0; %=0. (8)

The density is then given by
p2Ax) = (x, 7lx,7) = (47g,) "2, (9)

Using a time-dependent variational principle, one can obtain
the equations for the evolution in imaginary time,

dq/dT=—-g,U,

dgJdr=—g>U" +h%m,

dyT/dT=_UT_gTUZ/4’ (10)

where U’ and U” define the first and second derivatives of
the potential U(x) and

A, =ALx) = (x;7]A

X3Py (07 (11)

The initial condition (8) are propagated from 7=0 to 7
=[3/2. If the potential U(x) is expressed as, e.g., linear com-
bination of Gaussians, all terms in the right-hand side of Eq.
(10) can be evaluated analytically, thus making its numerical
solution cheap. A detailed, full dimensional derivation of the
VGW is provided in Ref. 12.

The classical limit A2/m—0 yields q,=q,, g,=0, and v,
=—B/2U(x), leading to the classical canonical distribution
when inserted in Eq. (9). The magnitude of #%/m defines the
rate of broadening of the Gaussians in Eq. (10), i.e., the
quantum fluctuations, which increase with decreasing tem-
perature.

Dynamical properties are commonly expressed in terms
of the time-correlation function,

Cup(t:8) = ETr[e‘BHAe‘H’/ﬁBe“H’/ﬁ]. (12)

However, CMD and RPMD provide approximations for the
Kubo transformed quantum time-correlation functions,?

1 (7 T,
C/Iq(;bO(t;B) — B_Zf dN X Tr[e()\—ﬁ)HAe—)\Heth/hBe—lHt/ﬁ].
0

(13)

It turns out that the most convenient choice for GMD is to
deal with the symmetrized correlation function,
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1 R e
Cf&gm(t;ﬁ) — 2Tr[e—BH/ZAe—BH/2eth/hBe—th/fi] (14)

as in this case one can take advantage of the imaginary-time
propagation to [3/2, rather than S.

Both C(#; B) and Ci3™°(t; B) provide the same informa-
tion as the regular quantum time-correlation function
C,p5(t; B) and are related to each other in the Fourier space,

hBw .
Caplw) = WCEE“((») =P w).  (15)

However, what makes C53'(t; 8) and CX5™(¢; 8) different is
that they both have the same symmetries as the classical
time-correlation function,

1 [ dxodpy gy
=5 | St o < At post ).

(16)

thus making it possible to directly relate the classical and
quantum dynamics in real time.
For the case when both operators are functions of position

only, i.e., A:A()?) and é:B(}?), for =0 we can write [see Eq.

(1D],
1
ijme(O;ﬁ) = Ef dXPE(X)AB/z(X)B(X)- (17)

This expression can be rewritten to reflect the structure of a
classical time-correlation function at =0,

svm L[ dxodpo _gp 0
Ci'(0;8) = Ef #e Btlei(xo.p0) Apn(x)B(xg),

(18)

where the form of the effective Hamiltonian for the 1D case
can be retrieved from Egs. (1) and (4). We now make an ad
hoc approximation and extend C35'(0; ) to finite times by
replacing B(x,) with B(x,),

1 [ dxodpy _ .
()= f o € o0 X Ag () Bx,),

(19)

where (x,,p,) is the classical trajectory obtained by propagat-
ing the equations of motion [Eq. (5)].

Equation (5) requires an imaginary-time propagation at
every point in phase space in order to obtain the quantum
density and thus, the force. Each point along the real-time
trajectory (x,,p,) is the origin of an imaginary-time trajectory
q, with go=x,. The real-time trajectory (x,,p,) is therefore
connected to a second trajectory ¢g;(¢), which is obtained by
propagating the former in imaginary time to (8/2. They are
interdependent since (x,,p,) determines gg;(¢) and vice
versa.

By construction, Eq. (19) is correct in the zero-time limit
(t—0), as long as the VGW approximation of the quantum
density is accurate. The next step is to adjust m.g in order to
make the mapping of the real-time dynamics correct at finite
times as well, at least for the important limiting case of the
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harmonic potential [V(x):%mzwzxz]. The VGW Eq. (10) in
this case give the exact solution,

90 _ h tanh(hwT)

4= cosh(fiw7) 8T

maw

1 m?w?
V,=— Elog[cosh(ﬁwT)] - ng%. (20)
The effective Hamiltonian then reads
2 2m2w2 x2
H.(x,p:B) = +—— gz 21
e, 3 8) e 1B 8p27 (21)

which is also harmonic but with a frequency that depends on
megr. In order to fix its value to be equal to w, we set

2m?

n’B
With this ansatz the time-correlation function obtained using
Eq. (19) becomes exact for the harmonic oscillator at any
value of 8 and ¢.

Consequently, we generalize Eq. (22) to all potentials.
This local harmonic approximation makes the effective mass
not only temperature but also position dependent (since for
an anharmonic potential the Gaussian width gz, depends on
the position). Equation (5) then yields the explicit expres-
sions for the real-time dynamics,

Mg = 8pn- (22)

.. p
X=—",
Megp
14 2 1|1 dm
p=——n[pg0)]+ | -o— - — | — L (23)
B(?X Zmeff ZB Meagp ox

This is the main result of the present work. The quantum
dynamics is mapped to the dynamics of a classical system
defined by the effective Hamiltonian (1) with the effective
mass [Eq. (22)]. Quantum time-correlation functions are ob-
tained from the approximation for the symmetrized correla-
tion function [Eq. (19)].

We illustrate the method on two 1D systems which have
also been used to benchmark the CMD,? the RPMD,®
FWD,?! etc. They are the weakly anharmonic oscillator and
the quartic oscillator,

(24)

For both V,(x) and V,(x), we examine a low-temperature
regime B=8 and a medium temperature B=1, where kzT is
comparable to the energy gap between the lowest two eigen-
states.

Figure 1 shows the position autocorrelation function
C"(t; B) for the anharmonic potential V. The open circles
correspond to the exact result, which has been obtained by
diagonalizing the Hamiltonian and estimating the symme-
trized correlation functions in the basis of energy eigenstates.
The GMD approximation [Eq. (19)] yields
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FIG. 1. (Color online) Position autocorrelation functions for
V,(x), Eq. (24). Open circles: exact result; full line: GMD approach,
Eq. (25); dotted line: classical result; dashed line: RPMD calcula-
tion from Ref. 8.

1 [ dxyd
M1 8) =~ f L0 om0 g, (25)

ZJ) 2mh

It is very close to the exact result, which is pleasing but
expected because GMD is exact for the harmonic oscillator
and the added anharmonicity is weak. To include the classi-
cal result for comparison, we consider the classical approxi-
mation to the Kubo-transformed time-correlation function,??
and convert it to the symmetrized correlation function ac-
cording to Eq. (15). It is totally wrong for B=8, but for B
=1 it nearly coincides with the exact quantum result, again
because the system is dominantly harmonic. Figure 1 also
shows the RPMD results from Ref. 8, after transformation
according to Eq. (15). The RPMD and GMD correlation
functions behave similarly for the two temperatures consid-
ered.

Figure 2 shows the same correlation functions but for the
quartic oscillator V,(x). At 8=8 both GMD and RPMD,?
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FIG. 2. (Color online) Same as Fig. 1, but for the quartic oscil-
lator V,(x), Eq. (24).
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FIG. 3. Symmetrized autocorrelation function of A=#3 for the
quartic oscillator V,(x).

while reproducing quite well the oscillation period, show
dephasing, a typical characteristic of a classical system. At
B=1, the statistics is no longer dominated by the zero-point
energy and even the classical approximation can describe
well the short time dynamics, which is, again, expected.1

An example for a nonlinear operator, A=53,is provided in
Fig. 3 for the same quartic oscillator V,(x).

For double well potentials, the GMD time correlation
function resembles Fig. 2 as long as the average energy lies
above the barrier such that tunneling is not dominant. In the
opposite case, GMD faces the same problems as RPMD and
CMD: relying on classical trajectories, it is impossible to
penetrate the barrier and provide tunneling rates, even
though the underlying “statistical” framework, the VGW or,
respectively, the imaginary-time path integral, can provide
the correct density in the classically forbidden region.

Because the GMD preserves the canonical distribution,

correlation functions of the time derivatives of A and/or B
can also be computed due to the relationship?*

7
CisN) =4 Cinl0) == 2 Cuif = 5C0, (26)

which also holds for the quantum correlation functions. For
example, the velocity-velocity correlation function can be
obtained from CSMP(z; ) using this relationship. Alterna-
tively, it can be computed directly by

UoVy,
90=%0

1 [ dxydp, 49
COMP(1. g) = _f Z20RP0 —BHeprlxopo) 5 —LE2
o (5B) z) 2mh ¢ 990

(27)
where we have used

ﬁxO

94, _ 94-| 9%
90=*%0 ot

o~ gy
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FIG. 4. Velocity autocorrelation functions for the anharmonic
oscillator V;(x). Open circles: exact results; full line: GMD ap-
proach, Eq. (27); dotted line: classical results.

Figures 4 and 5 depict the velocity autocorrelation func-
tion for V;(x) and V,(x), showing the same patterns of agree-
ment with the exact calculations as the position autocorrela-
tion function in Figs. 1 and 2.

Exact numerical solutions are not usually available for
large quantum systems and assessing the accuracy of a quan-
tum dynamical method by direct comparison with the experi-
ment is not conclusive evidence. There is no guarantee that
the employed force fields are correct and the available ex-
perimental points are quite often insufficient. Perez et al.
have introduced a self-consistency check for quantum dy-
namical methods,?® based on the fact that most of them can
compute the imaginary-time correlation functions with high
accuracy and that the conversion from real to imaginary time
is numerically stable (unlike the opposite direction). One
such imaginary-time correlation function is

G(7) = 2[(&) = (R&()], (28)

where £(7)=e¢ ™xe™. G(7) is related to the Fourier trans-
form of the symmetrized velocity autocorrelation function,

B e .+ ., | o exact [ 4

| —r—r—— — —1— GMD

R classical
o

FIG. 5. Same as Fig. 4 but for the quartic oscillator V,(x).
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FIG. 6. (Color online) Self-consistency check. Full lines: direct
evaluation of G(7), Eq. (28); dashed lines: reconstruction from the
real time domain according to Eq. (29). Upper row: a harmonic
oscillator, defined in the text. Second and third row: V;(x) and,
respectively, V,(x), Eq. (24).

G(r)=- ;—wa dwéi{,m(w){cosh[hw(ﬁ/Z - 7]

— cosh(hwpB/2)}. (29)
Equation (29) is exponentially sensitive to high frequencies,
w=1/hB, and diminishes the contribution of lower ones. It
neglects thereby long-time dynamics and emphasizes short-
time accuracy r=#hp.

Figure 6 compares the direct evaluation of G(7) with the
VGW and the reconstruction from the real-time domain by
means of Eq. (29). Test cases are the same model potentials
Vi(x), V,(x), and a harmonic oscillator, V. (x)
=0.7145629x>. At low temperatures, 73 encompasses at least
one oscillation period and the slightly higher oscillation fre-
quency visible in Figs. 1 and 2 is reflected in the deviation
toward larger G(7). At high temperatures, only very short-
time scales are selected, where GMD performs very well.
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The GMD presented in this paper proved very powerful in
estimating time-correlation functions of position-dependent
operators and their time derivatives. It accounts for the zero-
point energy, is accurate in the short-time limit r=#%, and it
is exact for the harmonic oscillator and in the high-
temperature limit. Main applications are nondegenerate sys-
tems where the de Broglie wavelength is comparable to the
range of the interaction. This includes nuclear dynamics at
low temperatures or electron dynamics in warm, dense plas-
mas. Such systems will be investigated in more detail in
future work.

While in this paper, we only tested GMD using 1D sys-
tems, for which numerically exact results are available, the
method is still to be demonstrated using more challenging
systems. At least for the 1D examples considered here, GMD
provides the degree of accuracy comparable to that of other
existing methods. The main advantage of the method will
though be in its numerical efficiency. For example, compared
to the FWD of Ref. 21 that utilizes the same VGW represen-
tation of the density matrix, GMD requires significantly less
numerical effort (one less integral over the configuration
space). When compared to the path-integral-based methods,
GMD does not inflate the phase space, i.e., the corresponding
classical phase space has the minimal number of degrees of
freedom. This may also be viewed as an advantage, as the
nonphysical degrees of freedom may in certain cases become
a source of spurious dynamical effects.?® Furthermore, the
numerical efficiency of GMD over the path-integral methods
relies on the efficiency in representing the quantum Boltz-
mann operator. For example, the ergodicity problem arising
in the PIMC framework even in calculations of time-
independent equilibrium properties is more severe than that
in the VGW framework. Furthermore, the internal ring poly-
mer degrees of freedom have some very high-frequency
modes, thus requiring a small time step. We note Refs. 14,
15, and 27 reporting some successful applications of the
VGW method to calculations of thermodynamic properties
(including structural transitions) of relatively large Lennard-
Jones clusters, for which the corresponding PIMC calcula-
tions are currently unfeasible.
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